On the Neumann eigenvalues for second-order Sturm–Liouville difference equations
نویسندگان
چکیده
منابع مشابه
NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملExact Neumann Boundary Controllability for Second Order Hyperbolic Equations
Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in L(Ω) × (H1(Ω))′ and we derive estimates for the control time T .
متن کاملOn the Linearization of Second-Order Differential and Difference Equations
This article complements recent results of the papers [J. Math. Phys. 41 (2000), 480; 45 (2004), 336] on the symmetry classification of second-order ordinary difference equations and meshes, as well as the Lagrangian formalism and Noether-type integration technique. It turned out that there exist nonlinear superposition principles for solutions of special second-order ordinary difference equati...
متن کاملInequalities among Eigenvalues of Second-Order Difference Equations with General Coupled Boundary Conditions
متن کامل
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2020
ISSN: 1687-1847
DOI: 10.1186/s13662-020-03064-3